Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[1-(2-Hydroxyethyl)-6-methyl-2phenyl-4-thioxo-1,4-dihydropyrimidin-5-yl]-1-ethanone¹

José R. Sabino,^a* Carlito Lariucci,^a Rodrigo M. Bastos^b and Silvio Cunha^b

^aInstituto de Física, UFG, Caixa Postal 131, 74001-970 Goiânia, GO, Brazil, and ^bInstituto de Química, UFBa, 40170-290 Salvador, BA, Brazil Correspondence e-mail: jrsabino@if.ufg.br

Received 3 April 2007; accepted 21 April 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.212; data-to-parameter ratio = 13.3.

The title compound, $C_{15}H_{16}N_2O_2S$, is of interest with respect to antibacterial and anticancer activity and shows some trypanocidal activity. The crystal structure displays O-H···N hydrogen bonding, forming a chain along [001]. A weak non-classical hydrogen bond of type $C-H \cdots S$ connects molecules across an inversion centre. The packing is also mediated by an intermolecular C=O··· π ring interaction connecting centrosymmetrically related molecules. Steric effects are responsible for the molecular conformation.

Related literature

Thioxopyrimidine is an essential structural unit of several heterocycles and displays a wide range of interesting biological and pharmacological properties, such as anticancer and antimicrobial activities (Cocco et al., 1995, 2001). 4-Thioxopyrimidine was obtained by the formal aza-[3+3] cycloaddition reaction of acyclic N-alkyl-substituted enaminones with benzoyl isothiocyanate (Cunha et al., 2007).

¹ Structural studies of 4-thioxopyrimidines. Part 1.

Crystal data

$C_{15}H_{16}N_2O_2S$	V = 1455.6 (3) Å ³
$M_r = 288.37$	Z = 4
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation
a = 11.3833 (14) Å	$\mu = 2.00 \text{ mm}^{-1}$
b = 10.4303 (17) Å	T = 297 (2) K
c = 12.8157 (14) Å	$0.35 \times 0.25 \times 0.2$ mm
$\beta = 106.944 \ (9)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.525, T_{\max} = 0.669$ 2832 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	185 parameters
$wR(F^2) = 0.212$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
2465 reflections	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

2465 independent reflections

2 standard reflections

frequency: 120 min

intensity decay: 2%

 $R_{\rm int} = 0.016$

2293 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline O21 - H21 \cdots N3^{i} \\ C13 - H13C \cdots S^{ii} \end{array}$	0.82	2.17	2.972 (3)	167
	0.96	2.84	3.789 (3)	172

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1993); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). We also thank CNPq for a research fellowship to SC.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2101).

References

Cocco, M. T., Congiu, C. & Onnis, V. (1995). Il Farmaco, 50, 73-76.

- Cocco, M. T., Congiu, C., Onnis, V. & Piras, R. (2001). Il Farmaco, 56, 741-748.
- Cunha, S., Bastos, R. M., Silva, P. O., Costa, G. A. N., Vencato, I., Lariucci, C., Napolitano, H. B., Oliveira, C. M. A., Kato, L., Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111-119.
- Enraf-Nonius (1993). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

supplementary materials

Acta Cryst. (2007). E63, o2850 [doi:10.1107/81600536807019940]

1-[1-(2-Hydroxyethyl)-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidin-5-yl]-1-ethanone

J. R. Sabino, C. Lariucci, R. M. Bastos and S. Cunha

Comment

Thioxopyrimidine is an essential structural unit of several heterocycles, which displays a wide range of interesting biological, and pharmacological properties, such as anticancer and antimicrobial activities (Cocco *et al.*, 2001, Cocco *et al.*, 1995). Despite these characteristics, solid-state studies of such 4-thioxopyrimidines are scarce. Recently, we described our results concerning the formal aza-[3+3] cycloaddition reaction of acyclic *N*-alkyl-substituted enaminones with benzoyl isotiocyanate for direct 4-thioxopyrimidines synthesis (Cunha *et al.*, 2007). Compound (I) showed some level of trypanocidal activity.

This is the first of a series of three papers devoted to the structural analisys of 4-thioxopyrimidines, Ethyl 1-(2-hydroxyethyl)-6-methyl-2-phenyl-4-thioxo-1,4-dihydro-5- pyrimidinecarboxylate and Ethyl 1-butyl-6-methyl-2-phenyl-4-thioxo-1,4-dihydro-5-pyrimidinecarboxylate will be presented in Part 2 and Part 3.

The molecule of (I) is depicted in Fig. 1. The conformation is defined by steric effects, which force a rotation of the phenyl ring relative to the mean plane though the pyrimidine group (rms 0.032 Å) by 84.19 (8) °, and keep the torsion angles C20–C19–N1–C6 of -92.1 (3)° and C4–C5–C14–O15 of 104.8 (3)°. The observed bond distances C4=S, C14=O15, C2=N3 and C5=C6 are indicative of doubly bonded atoms. The bonds C2–C7 and C5–C14 are longer than the expected formal single bond distance by 0.033 and 0.052 Å, respectively, a consequence of the phenyl ring and acetyl group rotations relative to the pyrimidine ring plane and lack of π -orbital overlap on these bonds.

The packing (Fig. 2) is stabilized by an intermolecular H-bond of type O21–H21···N3ⁱ and a non-classical intermolecular interaction of type C13–H13C···Sⁱⁱ [Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x, -y+1, -z+1]. The former connects molecules in linear chains along to the [0 0 1] direction and the later connects parallel molecules about an inversion center. Also, a non-H weak intermolecular C14=O15···π-ring interaction mediates the molecular packing between molecules related by an inversion center with distances O15···C2ⁱⁱ and O15···N1ⁱⁱ of 3.173 (3) and 2.922 (3) Å, respectively.

Experimental

Compound (I) (m.p. 508.7–509.6 K) was prepared according to a known procedure (Cunha *et al.*, 2007). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in CHCl₃ at room temperature.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms or $= 1.2U_{eq}(C)$ for other H atoms. Atom H21 attached to O2 was assigned a bond distance of 0.82 Å and refined with riding constraints using $U_{iso}(H16) = 1.2U_{eq}(O)$. Atom H21 and the methyl H atoms attached to C13 and C16 were allowed to rotate to fit the electron density.

Figures

Crystal data

Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. A packing diagram for (I). Intermolecular contacts are shown as dashed lines. Only the H atoms involved in hydrogen bonds are shown.

1-[1-(2-Hydroxyethyl)-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidin-5-yl]- 1-ethanone

-	
$C_{15}H_{16}N_2O_2S$	$F_{000} = 608$
$M_r = 288.37$	$D_{\rm x} = 1.316 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation $\lambda = 1.54180 \text{ Å}$
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 11.3833 (14) Å	$\theta = 18.4 - 43.4^{\circ}$
b = 10.4303 (17) Å	$\mu = 2.00 \text{ mm}^{-1}$
c = 12.8157 (14) Å	T = 297 (2) K
$\beta = 106.944 \ (9)^{\circ}$	Prism, colourless
$V = 1455.6 (3) \text{ Å}^3$	$0.35 \times 0.25 \times 0.2 \text{ mm}$
Z = 4	
Data collection	
Enraf–Nonius CAD-4 diffractometer	$\theta_{\text{max}} = 67.2^{\circ}$
T = 297(2) K	$\theta_{\min} = 4.1^{\circ}$
non–profiled $\omega/2\theta$ scans	$h = -13 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 12$
$T_{\min} = 0.525, T_{\max} = 0.669$	$l = -1 \rightarrow 15$
2832 measured reflections	2 standard reflections

2465 independent reflections 2293 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.212$ S = 1.142465 reflections 185 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.1484P)^2 + 0.5327P]$ where $P = (F_0^2 + 2F_c^2)/3$
$$\begin{split} (\Delta/\sigma)_{max} &< 0.001 \\ \Delta\rho_{max} &= 0.45 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} &= -0.42 \ e \ \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL97 (Sheldrick, 1997),} \\ \text{Fc}^* &= \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.049 \ (4) \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

every 120 min

intensity decay: 2%

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.2055 (2)	0.6771 (2)	0.4151 (2)	0.0379 (6)
C4	0.0370 (2)	0.5648 (2)	0.3104 (2)	0.0398 (6)
C5	-0.0344 (2)	0.6197 (2)	0.37357 (19)	0.0381 (6)
C6	0.0206 (2)	0.6935 (2)	0.4626 (2)	0.0380 (6)
C7	0.3353 (2)	0.7183 (3)	0.4316 (2)	0.0432 (7)
C8	0.3584 (3)	0.8187 (3)	0.3714 (3)	0.0565 (8)
H8	0.2934	0.8627	0.3241	0.068*
C9	0.4788 (3)	0.8549 (4)	0.3811 (3)	0.0719 (10)
Н9	0.4944	0.9229	0.3401	0.086*
C10	0.5744 (3)	0.7899 (4)	0.4511 (4)	0.0773 (11)
H10	0.6549	0.8139	0.4574	0.093*
C11	0.5523 (3)	0.6903 (4)	0.5115 (4)	0.0806 (12)
H11	0.618	0.6469	0.5587	0.097*
C12	0.4323 (3)	0.6526 (3)	0.5036 (3)	0.0620 (9)
H12	0.4174	0.5851	0.5455	0.074*
C13	-0.0490 (3)	0.7478 (3)	0.5336 (3)	0.0534 (7)
H13A	-0.1354	0.7377	0.499	0.08*
H13B	-0.03	0.8372	0.5456	0.08*
H13C	-0.0266	0.7036	0.6023	0.08*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C14	-0.1707 (2)	0.5926 (3)	0.3418 (2)	0.0453 (7)
C16	-0.2484 (3)	0.6676 (3)	0.2491 (3)	0.0642 (9)
H16A	-0.3296	0.6318	0.2266	0.096*
H16B	-0.2135	0.6646	0.1894	0.096*
H16C	-0.2524	0.755	0.2713	0.096*
C19	0.2104 (2)	0.7881 (3)	0.5869 (2)	0.0453 (7)
H19A	0.2942	0.7566	0.6113	0.054*
H19B	0.1717	0.7682	0.6431	0.054*
C20	0.2126 (3)	0.9326 (3)	0.5732 (2)	0.0550 (8)
H20A	0.2487	0.9539	0.5155	0.066*
H20B	0.1296	0.9662	0.5534	0.066*
N1	0.14383 (18)	0.72046 (19)	0.48503 (16)	0.0379 (5)
N3	0.15686 (18)	0.6024 (2)	0.33238 (17)	0.0421 (6)
O15	-0.2127 (2)	0.5186 (2)	0.3936 (2)	0.0675 (7)
O21	0.2829 (2)	0.9875 (3)	0.67280 (19)	0.0693 (7)
H21	0.2486	0.9747	0.7199	0.104*
S	-0.02136 (6)	0.45695 (7)	0.21138 (6)	0.0530 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0354 (12)	0.0382 (12)	0.0411 (12)	-0.0003 (9)	0.0126 (9)	0.0008 (10)
C4	0.0432 (13)	0.0375 (12)	0.0395 (12)	-0.0037 (9)	0.0134 (10)	0.0021 (10)
C5	0.0372 (12)	0.0360 (12)	0.0414 (13)	-0.0018 (9)	0.0120 (10)	0.0043 (10)
C6	0.0391 (12)	0.0341 (12)	0.0428 (13)	0.0000 (9)	0.0151 (10)	0.0027 (10)
C7	0.0329 (12)	0.0460 (14)	0.0508 (14)	-0.0029 (10)	0.0122 (10)	-0.0084 (12)
C8	0.0454 (15)	0.0673 (19)	0.0604 (17)	-0.0084 (13)	0.0209 (13)	0.0026 (15)
C9	0.0545 (18)	0.078 (2)	0.093 (3)	-0.0160 (16)	0.0357 (17)	-0.002 (2)
C10	0.0455 (17)	0.077 (2)	0.115 (3)	-0.0157 (16)	0.0323 (18)	-0.031 (2)
C11	0.0428 (16)	0.069 (2)	0.118 (3)	0.0060 (15)	0.0043 (18)	-0.015 (2)
C12	0.0437 (15)	0.0530 (16)	0.082 (2)	0.0007 (12)	0.0064 (14)	-0.0023 (16)
C13	0.0537 (15)	0.0545 (16)	0.0603 (17)	-0.0026 (12)	0.0296 (13)	-0.0078 (14)
C14	0.0394 (13)	0.0412 (13)	0.0556 (15)	-0.0030 (10)	0.0144 (11)	0.0005 (12)
C16	0.0471 (15)	0.0654 (19)	0.072 (2)	0.0039 (13)	0.0039 (13)	0.0128 (16)
C19	0.0489 (14)	0.0472 (14)	0.0395 (13)	-0.0029 (11)	0.0123 (11)	-0.0050 (11)
C20	0.0677 (18)	0.0490 (16)	0.0527 (16)	-0.0151 (13)	0.0244 (14)	-0.0123 (13)
N1	0.0388 (10)	0.0379 (11)	0.0378 (11)	-0.0003 (8)	0.0125 (8)	0.0000 (8)
N3	0.0411 (11)	0.0429 (11)	0.0452 (12)	-0.0041 (9)	0.0173 (9)	-0.0055 (10)
015	0.0474 (12)	0.0666 (14)	0.0890 (17)	-0.0107 (10)	0.0209 (11)	0.0214 (13)
O21	0.0808 (16)	0.0743 (15)	0.0632 (14)	-0.0388 (12)	0.0376 (12)	-0.0265 (13)
S	0.0551 (5)	0.0535 (6)	0.0501 (5)	-0.0125 (3)	0.0146 (3)	-0.0143 (3)

Geometric parameters	(Å,	°)
----------------------	-----	----

C4—S	1.680 (3)	C19—C20	1.519 (4)
C14—O15	1.205 (4)	C20—O21	1.415 (4)
C2—N3	1.302 (3)	C8—H8	0.93
C4—N3	1.368 (3)	С9—Н9	0.93
C19—N1	1.483 (3)	C10—H10	0.93

С2—С7	1.493 (3)	C11—H11	0.93
C6—C13	1.482 (4)	C12—H12	0.93
C14—C16	1.480 (4)	C13—H13A	0.96
C2—N1	1.367 (3)	C13—H13B	0.96
C4—C5	1.424 (4)	C13—H13C	0.96
C5—C6	1.368 (4)	C16—H16A	0.96
C5—C14	1.511 (3)	C16—H16B	0.96
C6—N1	1.377 (3)	C16—H16C	0.96
С7—С8	1.370 (4)	C19—H19A	0.97
C7—C12	1.396 (4)	C19—H19B	0.97
C8—C9	1.393 (4)	C20—H20A	0.97
C9—C10	1.371 (6)	C20—H20B	0.97
C10-C11	1.362 (6)	O21—H21	0.82
C11-C12	1 396 (5)		
N2 C2 N1	102 6 (0)	C10 C0 U0	120.1
$N_2 = C_2 = C_7$	123.0(2)	$C_{10} = C_{9} = H_{9}$	120.1
N3-C2-C7	117.1 (2)	С8—С9—Н9	120.1
NI	119.2 (2)	CII—CI0—HI0	119.8
N3-C4-C5	117.9 (2)	C9—C10—H10	119.8
N3-C4-S	119.93 (19)	CIO-CII-HII	119.6
C5—C4—S	122.20 (19)	C12—C11—H11	119.6
C6—C5—C4	120.2 (2)	C7—C12—H12	120.7
C6—C5—C14	120.9 (2)	C11—C12—H12	120.7
C4—C5—C14	118.9 (2)	C6—C13—H13A	109.5
C5—C6—N1	118.7 (2)	C6—C13—H13B	109.5
C5—C6—C13	122.1 (2)	C6—C13—H13C	109.5
N1—C6—C13	119.2 (2)	C14—C16—H16A	109.5
C8—C7—C12	120.2 (3)	C14—C16—H16B	109.5
C8—C7—C2	119.0 (2)	C14—C16—H16C	109.5
C12—C7—C2	120.8 (3)	N1-C19-H19A	109
С7—С8—С9	120.1 (3)	С20—С19—Н19А	109
C10—C9—C8	119.8 (4)	N1—C19—H19B	109
C11—C10—C9	120.4 (3)	С20—С19—Н19В	109
C10-C11-C12	120.9 (3)	O21—C20—H20A	109.9
C7—C12—C11	118.6 (3)	С19—С20—Н20А	109.9
O15—C14—C16	122.7 (3)	O21—C20—H20B	109.9
O15—C14—C5	120.8 (2)	С19—С20—Н20В	109.9
C16—C14—C5	116.4 (2)	C20—O21—H21	109.5
N1—C19—C20	113.0 (2)	H13A—C13—H13B	109.5
O21—C20—C19	108.7 (3)	H13A—C13—H13C	109.5
C2—N1—C6	118.9 (2)	H13B—C13—H13C	109.5
C_{2} N1-C19	120.4(2)	H16A—C16—H16B	109.5
C6-N1-C19	120.6(2)	H16A—C16—H16C	109.5
$C_2 = N_3 = C_4$	120.0(2)	H16B-C16-H16C	109.5
C7—C8—H8	119.9	H19A_C19_H19B	107.8
C9_C8_H8	119.9	H20A_C20_H20B	107.0
	0.0 (4)		74.0 (4)
	$-\delta.\delta(4)$	0 - 0 - 014 - 015	-/4.0(4)
S	1/1.19(19)	C4-C5-C14-O15	104.8 (3)
N3-C4-C5-C14	172.4 (2)	C6—C5—C14—C16	102.4 (3)

supplementary materials

-7.6 (3)	C4—C5—C14—C16	-78.8 (3)
4.3 (3)	N1-C19-C20-O21	-177.2 (2)
-176.9 (2)	N3—C2—N1—C6	-5.7 (4)
-177.2 (2)	C7—C2—N1—C6	173.1 (2)
1.6 (4)	N3-C2-N1-C19	170.4 (2)
81.4 (3)	C7—C2—N1—C19	-10.8 (3)
-97.4 (3)	C5—C6—N1—C2	2.7 (3)
-95.9 (3)	C13—C6—N1—C2	-175.8 (2)
85.2 (3)	C5-C6-N1-C19	-173.4 (2)
0.7 (5)	C13—C6—N1—C19	8.1 (3)
-176.7 (3)	C20-C19-N1-C2	91.8 (3)
-0.1 (5)	C20-C19-N1-C6	-92.1 (3)
-0.2 (6)	N1-C2-N3-C4	1.1 (4)
-0.1 (6)	C7—C2—N3—C4	-177.7 (2)
-0.9 (5)	C5—C4—N3—C2	6.1 (4)
176.4 (3)	S-C4-N3-C2	-173.90 (19)
0.6 (6)		
	$\begin{array}{c} -7.6 (3) \\ 4.3 (3) \\ -176.9 (2) \\ -177.2 (2) \\ 1.6 (4) \\ 81.4 (3) \\ -97.4 (3) \\ -97.4 (3) \\ -95.9 (3) \\ 85.2 (3) \\ 0.7 (5) \\ -176.7 (3) \\ -0.1 (5) \\ -0.2 (6) \\ -0.1 (6) \\ -0.9 (5) \\ 176.4 (3) \\ 0.6 (6) \end{array}$	-7.6 (3) $C4-C5-C14-C16$ $4.3 (3)$ $N1-C19-C20-O21$ $-176.9 (2)$ $N3-C2-N1-C6$ $-177.2 (2)$ $C7-C2-N1-C6$ $1.6 (4)$ $N3-C2-N1-C19$ $81.4 (3)$ $C7-C2-N1-C19$ $-97.4 (3)$ $C5-C6-N1-C2$ $-95.9 (3)$ $C13-C6-N1-C19$ $0.7 (5)$ $C13-C6-N1-C19$ $-176.7 (3)$ $C20-C19-N1-C2$ $-0.1 (5)$ $C20-C19-N1-C6$ $-0.2 (6)$ $N1-C2-N3-C4$ $-0.1 (6)$ $C7-C2-N3-C4$ $-0.9 (5)$ $C5-C4-N3-C2$ $176.4 (3)$ $S-C4-N3-C2$ $0.6 (6)$ $S-C4-N3-C2$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O21—H21···N3 ⁱ	0.82	2.17	2.972 (3)	167
C13—H13C····S ⁱⁱ	0.96	2.84	3.789 (3)	172

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x, -y+1, -z+1.

